MRSEC SEMINAR SERIES

Amorphous Transparent Conducting Oxides for Photovoltaics

John D. Perkins, Ph.D. National Center for Photovoltaics National Renewable Energy Laboratory

Thin film transparent conducting oxides (TCOs) are critical to most thin film photovoltaic (PV) technologies including Si Heterojunctions, CuInSe₂ (CIS), CdTe and Organic Photovoltaics (OPV). For the traditional TCOs such as Al:ZnO, Sn:In₂O₃ and F:SnO₂, good crystallinity is generally required for optimal properties. However, over the past decade, a new class of TCOs that are amorphous has emerged based on double (or triple) oxides of heavy metal cations with nominal ionic electronic configuration (n-1)d¹⁰ns⁰. This class is typified by In-Zn-O (IZO) and these materials are of increasing interest due to the excellent opto-electronic properties and smoothness ($R_{RMS} < 0.5$ nm) obtained for sputtered films deposited at less than 100 °C. For example, conductivities ≥ 2500 S/cm are common for amorphous In-Zn-O (a-IZO) films grown from a ceramic In₂O₃/ZnO target with 84 cation % (cat%) indium, the current industry standard. This talk will cover the materials growth, properties and PV application testing of two prototypical a-TCOs, a-InZnO (a-IZO) and a-ZnSnO (a-ZTO) being considered at NREL. First, co-sputtering compositionspread combinatorial methods are used to survey the overall all amorphous alloy space. Then, selected compositions are further optimized using DC, RF and RF-superimposed DC sputtering. Finally, these a-TCO materials are further developed by actual testing in PV devices including organic photovoltaics (OPV), Cu(In,Ga)Se₂ and Film Si Heterojunctions.

Wednesday, January 30, 2013 Cook Hall 2058, 3:00 - 4:00 p.m.

NU-MRSEC

mrc@northwestern.edu - 847.491.3606