MRSEC SEMINAR SERIES

"The Upper Limit of Charge and Spin Transport in Atomic and Molecular Junctions."

The inherent electronic mismatch between molecules and metals is a general limitation for efficient electron transport in molecule-based electronics, including organic photovoltaic cells, nanoscale organic spin-valves, and single-molecule junctions. To date, the study of electronic transport across metal-molecule interfaces focused on low conductance governed by tunneling or hoping processes. Recently, we fabricated highly transmitting single-molecule junctions in order to study the upper limit of conductance across metal-molecule interfaces. We revealed two fundamental mechanisms for conductance saturation near full electron transmission: a Band-like transmission and Conductance pinning. These mechanisms can be used to optimize efficient charge injection, information transfer and recombination processes across metal-molecule interfaces.

The interactions of molecules with metals can be further used to confront the inherent limited spin-injection from ferromagnetic metal electrodes. In this respect, we find indications for perfect spin filtering in nickel-oxygen atomic wires. The presented effect is achieved by selective orbital hybridization, which is an attractive way for gaining enhanced magnetic and spin transport properties at the atomic scale.

Oren Tal, Ph.D.

Chemical Physics Department Weizmann Institute of Science

Monday April 4, 2016 Cook Hall 2058 11:00 a.m. – 12:00 p.m.

Northwestern University Materials Research Center mrc@northwestern.edu - 847.491.3606

